
• What about other directions?

Lesson 22. The Gradient Vector and Directional Derivatives

0 Warm up

a. Find $\vec{a} \cdot \vec{b}$.	$ec{j}-2ec{j}.$
b. Find a unit vector that has the	e same direction as \vec{b} .
The gradient vector	
• The gradient of a function $f(x, y)$	y) of two variables is
• The gradient is a <u>vector</u> of partial	l derivatives
Example 2. Let $f(x, y) = \sin y + e^x$	cy . Find $\nabla f(1,0)$.
The directional derivative	
The directional derivative Recall for a function $f(x, y)$:	
• Recall for a function $f(x, y)$:	

• Let $u = \langle a, b \rangle$ be an arbitrary unit vector



• The **directional derivative** of f at (x, y) in the direction of a unit vector $\vec{u} = \langle a, b \rangle$ is

$$D_{\vec{u}}f(x,y) = \lim_{h\to 0} \frac{f(x+ha,y+hb) - f(x,y)}{h}$$

• The directional derivative $D_{\vec{u}}f(x,y)$ is

Example 3. The contour map of the temperature function T(x, y) is shown below (x and y are simply coordinates). Estimate the directional derivative of T at Reno in the southeasterly direction. What does this value mean?

Note: \vec{u} must be a unit vector	
• If you are asked for the directional derivative "in the direction of \vec{v} ," make sure \vec{v} is a unit vector. If isn't, make it one.	f it
Example 4. Find the directional derivative of $f(x, y) = \sin y + e^{xy}$ at the point $(1, 0)$ in the direction of the vect $x = \langle -3, 4 \rangle$.	or
The gradient and directional derivative for functions of 3 variables	
The gradient of a function $f(x, y, z)$ of three variables is defined similarly:	
$\nabla f(x,y,z) = \langle f_x(x,y,z), f_y(x,y,z), f_z(x,y,z) \rangle$	
The directional derivative of f at (x, y, z) in the direction of a unit vector \vec{u} can be computed using	
$D_{\vec{u}}f(x,y,z) = \nabla f(x,y,z) \cdot \vec{u}$	
The directional derivative $D_{\vec{u}}f(x,y,z)$ is	
Example 5. Find the directional derivative of $f(x, y, z) = \ln(3x + 6y + 9z)$ at point $(1, 1, 1)$ in the direction $z = (2, 6, 3)$.	of